
 1

DTNperf_3 at work: Aims and Use.
Carlo Caini

DEI/ARCES
University of Bologna, Italy

ccaini@arces.unibo.it

Anna d’Amico

DEI/ARCES
University of Bologna, Italy

anna.damico@studio.unibo.it

Michele Rodolfi

DEI/ARCES
University of Bologna, Italy

michele.rodolfi@studio.unibo.it

ABSTRACT
Delay-/Disruption- Tolerant Networking (DTN) aims at

providing interoperable communications in “challenged

networks”, where long delays, disruption, link intermittency

and other challenges prevent, or make difficult, the use of the

ordinary Internet architecture. Given their heterogeneity, to

assess DTN performance in challenged networks is

challenging in and of itself. For this reason, it is essential to

develop suitable evaluation tools, with very flexible use. In this

demo we present the third major release of DTNperf, a client-

server evaluation tool designed to assess goodput and to

provide status report logs in DTN Bundle Protocol (BP)

architectures. In this third version DTNperf has been greatly

enhanced in many respects, including full support of both

DTN2 and ION (the BP reference implementation and that

developed by NASA JPL, respectively). The demo wants to

present both new and enhanced features in a variety of

application examples, derived in part from the authors’

experience on satellite and space communications. The final

aim is to promote its use within the DTN community and

receive suggestions from researchers. DTNperf_3 is free

software and thanks to its double support is to be included not

only in DTN2, as were previous versions, but also in ION.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network

Protocols

General Terms
Measurement, Performance.

Keywords
Delay Tolerant Networking; Satellite communications; Space

Communications; Performance evaluation.

1. INTRODUCTION
Delay-/Disruption- Tolerant Networking (DTN) originated from

research on Inter-Planetary Networking (IPN) when its scope was

enlarged to encompass all “challenged networks”, [1] [2]. These

include a broad spectrum of different environments, from space

communications to wireless sensor networks. This heterogeneity

makes the assessment of DTN performance quite unique and

demands the use of specific evaluation tools.

DTNperf was first developed to assess goodput performance in

DTN bundle protocol architectures [3], [4], aiming to be a DTN

equivalent of the Iperf tool, widely used to test TCP and UDP

performance. From its first version (released in 2005), DTNperf

has been included in the DTN2 Bundle Protocol (BP) reference

implementation of DTNRG [5],[6]. DTNperf was then greatly

improved with the second major release (DTNperf_2, 2008) [7],

with improved robustness and many new features, including a

congestion window and the possibility of logging BP status reports

in a .csv (Comma Separated Values) file. DTNperf_2 has been

extensively used to evaluate DTN performance in satellite

communications [8] and in other fields as well. After a few years

of “honored service” however the need of new major release has

become evident. First, experiments with LEO satellites and in

deep-space environments made clear that it would be necessary to

extend the DTNperf support to ION, the BP implementation

developed by NASA JPL [9]. Second, in “data-mule” experiments,

or just when dealing with intermittent links, it would be very

useful to collect status reports on an external monitor, instead of on

the bundle source. Finally, to emulate streaming traffic, a rate-

based congestion control would be necessary. All these features

have now been included in the third major release, DTNperf_3,

which comprises a wide variety of other important enhancements

as well, as described below. DTNperf_3 has required the code to

be completely rewritten; it now consists of two parts, the DTNperf

application core and the Abstraction Layer (AL), designed to make

DTNperf_3 compatible with both DN2 and ION.

The aim of the demo is to present DTNperf_3 to the DTN research

community and to receive comments and suggestions from the

audience.

2. DTNPERF_3 OVERVIEW
DTNperf_3 has three operating modes: client, server and monitor.

The client generates and sends bundles, the server receives it and

the monitor collects status reports in .csv files. Client, server and

monitor correspond to the BP addresses “from”, “to” and “reply

to”[3], [4].

2.1. DTNperf Client
SYNTAX: dtnperf --client -d <dest_eid> <[-T <s> | -D <num> | -F

<filename>]> [-W <size> | -R <rate>] [options]

The most important parameters are explained below. The full list

of options can be obtained with the command “dtnperf --client --

help”.

2.1.1 Tx modes
The client has three mutually exclusive Tx modes to send bundles

to the server. In the time-mode (-T), a series of bundles with a

dummy payload of desired dimension (-P option) is generated and

“sent”, i.e. passed to the BP daemon for transmission, until the pre-

set transmission time elapses. Data-mode (-D) is the same as time-

mode, except that the bundle generation process ends after a given

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

CHANTS’13, September 30, 2013, Miami, Florida, USA.

ACM 978-1-4503-2363-5/13/09.

http://dx.doi.org/10.1145/2505494.2505508.

 2

amount of data has been “sent” to BP, and not after a time interval.

File-mode (-F) differs from data-mode because a file is transferred,

instead of dummy data. A noteworthy feature is the possibility to

split the file into multiple bundles of desired dimension.

2.1.2 Congestion control (window- or rate- based)
Independently of the Tx mode, two alternative congestion control

policies are available: window-based (-W) and rate-based (-R). In

the former, the “congestion window” W represents the maximum

number of bundles in-flight (i.e. sent but not acknowledged). The

mechanism is similar to the TCP congestion window, but: 1) W

has a fixed dimension; 2) in-flight bundles can be non-consecutive

(to cope with non-ordered delivery of BP); 3) there are not

retransmissions (acknowledgments are used only to trigger the

transmission of new bundles). DTNperf_3 has enhanced this

function with respect to previous versions, by replacing

“delivered” status report [3], [4] generated by the BP of the

destination node, by ACK bundles specifically created by the

DTNperf_3 server, as acknowledgments of bundles sent. This

innovation is essential to decouple the “reply to” from the source

node, thus allowing the monitor to be launched on a node different

from the source. Although the window-based mechanism is

generally useful, in some cases, e.g. to emulate streaming traffic, it

would be preferable to generate traffic at constant rate. For this

reason, in DTNperf_3 a rate-based congestion control has been

added. In response to rate-based traffic the server does not generate

any ACKs, like UDP.

2.2. DTNperf Server
The server receives bundles, acknowledges them if sent in

window-based mode, and reassembles bundle payloads if a file is

transferred.

SYNTAX: dtnperf --server [options]

In this third version, one instance can serve multiple clients in

parallel. Moreover, the file transfer is now robust against

disordered bundle delivery (incoming payloads are buffered until

either the entire file is received or a timeout expires).

2.3. DTNperf Monitor
The monitor receives and collects status reports and some

DTNperf control bundles. It can be launched either as an

independent process on an external node (external monitor), in

which case it can serve many concurrent clients, or as a “child”

process of a client (dedicated monitor), in which case it serves only

its “parent” client. The syntax to launch an external monitor is the

following:

SYNTAX: dtnperf --monitor [options]

The monitor creates a different .csv log file for each DTNperf

client session (i.e. one client “launch”), containing all status reports

generated by all nodes during the session.

2.4. The Abstraction Layer
To facilitate interoperability tests, DTNperf_3 has been designed

to be independent of the BP implementation. It relies on the

“Abstraction Layer”, i.e. a library expressly designed to provide a

common interface for DTNperf towards the APIs of different BP

implementations. The present version of the AL supports DTN2

and ION, but it could be extended to other implementations. If the

AL is compiled either for DTN2 or ION, DTNperf can run only on

top of DTN2 or ION (Figure 1a and b). If the AL is compiled for

both, DTNperf can run on top of both, as the switch between

DTN2 and ION API calls is performed at run time (Figure 1c)

Figure 1: DTNperf compatibility. a) DTN2 only, b) ION only,

c) DTN2 and ION with API call selection at run time.

3. DTNPERF_3 USE.
Although derived from authors’ experience on space

communications, DTNperf_3 has a general scope aiming at

embracing most DTN applications. In the examples below, to be

shown in the demo, the use of DTNperf_3 in some typical DTN

applications is presented, assuming that we have three DTN nodes,

vm1, vm2 and vm3, as source, destination and external monitor.

We will focus on client syntax, which is by far the most complex.

3.1. Basic applications

3.1.1 Ping
To ping vm2 from vm1:

dtnperf - -client -d dtn://vm2.dtn -T 15 –W 1 - -debug=1

With this command vm1 will send bundles of 50 kB (default) to

vm2 for 15s (-T15), one by one (-W1 allows just one bundle in

flight). The short default lifetime (60s) is useful to force the

deletion of undelivered bundles, which could interfere on

subsequent experiments. As no external monitor is indicated, the

.csv log file will be created on vm1 by a dedicated monitor.

3.1.2 Trace
To trace the route of a bundle:

dtnperf - -client –d dtn://vm2.dtn –D100kB -P100kB –W1 –C –f –r

This command sends a single bundle of 100 kB as the total amount

of data (-D100kB) coincides with the bundle payload (-P100kB).

The custody option is on (-C) and forwarded and received status

reports are requested (-f, -r). From the .csv file it is straightforward

to trace the route of the bundle sent.

3.1.3 File transfer.
To transfer a file segmented into multiple bundles of desired

dimension:

dtnperf - -client –d dtn://vm2.dtn –F picture.jpg –P 100kB –W4

Here a file is sent (-F) instead of dummy data. The dimension of

the bundle payload (-P100kB) is the dimension of segments into

which the file is split. This feature is useful to match limited

contact volumes as an alternative to proactive fragmentation [3].

Note however that file segmentation is carried out at application

layer (by DTNperf), while bundle fragmentation is performed at

BP layer (by the BP daemon).

 3

3.2. Performance evaluation in continous and

disrupted networks

3.2.1 Goodput (macro-analysis)
Goodput evaluation (i.e. data_ACKed/time), makes sense

especially if the DTN network is not partitioned (e.g. in GEO

satellite communications, where the challenges are long delay and

losses). To this end, it is necessary to send dummy bundles with

the window-based congestion control for a reasonable amount of

time to reach and maintain a steady state. The following command

could be suitable in the case of a hypothetical GEO satellite hop:

dtnperf - -client -d dtn://vm2.dtn -T 30 –P 1MB –W 4 –l 60

With this command vm1 will send bundles to vm2 for 30 s (-T30),

i.e. for a much longer interval than the typical GEO RTT (600ms

including processing time). To fill the (likely) large bandwidth-

delay product and to reduce the impact of bundle overhead,

bundles are large (-P1MB) and the congestion window W is

greater than one (-W4). The same experiment should be repeated

increasing W until the goodput reaches a maximum. Note that

goodput evaluation should always be complemented by the

analysis of status reports, collected in the example by the internal

monitor (default), to control the regularity of the bundle flow and

to recognize the reasons of the macro-results achieved.

3.2.2 Status report analysis (micro-analysis).
The evaluation of goodput is useful when links are continuous or

only moderately disrupted (e.g. in GEO satellites with mobile

terminals). As the chances of disruption increase (e.g. LEO

satellites, deep space communications), the study of individual

bundles (i.e. micro-analysis) becomes more important than

goodput. A possible command in the presence of disruption is:

dtnperf - -client -d dtn://vm2.dtn –m dtn://vm3.dtn –D30MB –P 1

MB –W4 –l 200

This command dispatches 30 bundles of 1 MB each, with a limit of

4 bundles in flight. Status reports are collected (possibly in real

time by means of dedicated links) by an external monitor (-m

option). Note that the lifetime has been increased to 200s (-l200) to

cope with disruption. Moreover, Data mode (-D30) is preferable

because disruption makes uncertain the test duration.

3.2.3 Status report analysis of streaming traffic.
To emulate a streaming source a possible command is:

dtnperf - -client -d dtn://vm2.dtn -T30 –P100kB –R2b

This command generates a stream of 100 kB bundles for 30s, at 2

bundles per second (-R2b). No ACKs are generated by the server,

as the congestion control is rate-based.

3.3. Performance evaluation in partitioned

networks: “data mule” communications
One of the most evident advantages of DTN architecture is the

possibility to cope with network partitioning. The extreme case is

that of “data mule” communications, where an intermediate node

(the “mule”, or “ferry”) is alternatively connected either to sender

or destination. In this case the evaluation of goodput is useless,

while the micro-analysis is essential. A possible command is:

dtnperf - -client -d dtn://vm2.dtn –m dtn://vm3.dtn –D 10 MB –P1

MB –W10 –l 200 -- debug=1

The external monitor (-m option) is very useful here, especially if

connected to other nodes through dedicated links (e.g. in a lab

testbed). By setting the window to the total number of bundles (10

in the example) these are sent in one burst, which can be preferable

in this kind of experiments, in order not to have to wait for ACKs

Alternatively, the user can take advantage of the rate-based

congestion control, which does not imply any ACKs (e.g. by

setting -R10b instead of –W10).

3.4. Interoperability tests
Thanks to the AL library, DTNperf_3 can run on top of either ION

or DTN2 BP. Moreover, if the AL is compiled for both, the very

same executable can be used. Interoperability tests, however, have

to cope with the different EID schemes preferentially used by

DTN2 and ION (“dtn” and “ipn” respectively). At present while

ION supports also the dtn scheme, the ipn scheme in DTN2

requires a NASA patch to work properly. To facilitate

experiments, DTNperf_3 in ION can register itself also with the

dtn scheme, thus allowing full interoperability also with DTN2

nodes unable to use the ipn scheme. In brief, DTNperf_3 can cope

with every combination of DTN2 and ION nodes, independently of

the EID scheme adopted by these.

4. CONCLUSIONS
The features of DTNperf, conceived as a sort of Iperf equivalent

for DTN networks, have been greatly extended in this third major

release. Among the most important innovations we have the

support of both DTN2 and ION, the external monitor and the rate-

based congestion control. This third major release also includes an

enhanced file transfer mode, an enhanced window-based

congestion control, an enhanced server and many minor

improvements. The demo aim is to show DTNperf_3 “at work” in

a large variety of possible DTN applications and to receive

feedback from the audience.

5. REFERENCES
[1] Burleigh S., Hooke A., Torgerson L., Fall K., Cerf V., Durst

B. and Scott K., 2003, Delay-tolerant networking: An
approach to interplanetary internet, IEEE Commun. Mag.,
41, 6 (Jun. 2003), 128–136.
DOI=10.1109/MCOM.2003.1204759

[2] McMahon A., Farrell S., 2009, Delay- and Disruption-
Tolerant Networking, IEEE Internet Computing 13, 6 (Nov.
/Dec. 2009), 82-87,. DOI=10.1109/MIC.2009.127

[3] Cerf V., Hooke A., Torgerson L., Durst R., Scott K., Fall K.,
Weiss H., 2007, Delay-Tolerant Networking Architecture,
Internet RFC 4838,.

[4] Scott K., Burleigh S., 2007, Bundle Protocol Specification,
Internet RFC 5050.

[5] Internet Research Task Force DTN Reseach Group
(DTNRG) web site: http://www.dtnrg.org/

[6] DTN2 code: http://sourceforge.net/projects/dtn/.

[7] Caini C., Cornice P., Firrincieli R., Livini M., 2009,
DTNperf_2: a Performance Evaluation tool for
Delay/Disruption Tolerant Networking, in Proc. of
ICUMT’09 (St.-Petersburg, Russia, October 2009, 1-6.
DOI=10.1109/ICUMT.2009.5345423

[8] Caini C., Cruickshank H., Farrell S., Marchese M., 2011,
Delay- and Disruption-Tolerant Networking (DTN): An
Alternative Solution for Future Satellite Networking
Applications, Proceedings of IEEE, 99, 11 (Nov.2011),
1980-1997. DOI=10.1109/JPROC.2011.2158378

[9] ION code: http://sourceforge.net/projects/ion-dtn/

