
1

DTNperf_3
DTNperf_3 is the third major version of the DTNperf tool, developed at University of Bologna. From release 3.6.0, it is

part of the DTNsuite, which consists of several DTN applications that make use of the Abstraction Layer, plus the

Abstraction Layer itself.

As suggested by its name, DTNperf is a tool for performance evaluation in Bundle Protocol DTN environments.

This document aims at providing the user with:

1) release notes

2) building instructions

3) a brief overview and a concise user guide.

Authors: Carlo Caini (Academic supervisor, carlo.caini@unibo.it), Michele Rodolfi (main author), Anna D’Amico, Davide

Pallotti, Andrea Bisacchi.

Table of Contents

1 DTNperf Release Notes ... 2

1.1 DTNPERF 3.6.2 (April 2020) ... 2

1.1.1 Main novelties ... 2

1.2 DTNPERF 3.6.1 (16 May 2019) ... 3

1.2.1 Main novelties ... 3

1.3 DTNperf 3.6.0 (22 November 2018) .. 3

1.3.1 Main novelties ... 3

1.3.2 New features ... 3

1.3.3 Bug fixed .. 4

1.4 DTNperf 3.5.1 (2 May 2017) .. 4

1.4.1 Update to allow the compilation of AL with ION 3.6.0 ... 4

1.5 DTNperf 3.5.0 (21 July 2016) ... 4

1.5.1 New features ... 4

1.6 DTNperf 3.4.0 (23 November 2015) .. 4

1.6.1 New features ... 4

1.6.2 Bug fixed .. 4

1.7 DTNperf 3.3.5 (14 April 2015) .. 5

1.7.1 New features ... 5

2

1.7.2 Bug fixed .. 6

1.8 DTNperf 3.0.0 (DTNperf_3) ... 6

1.9 DTNperf 2.x (DTNperf_2) ... 6

1.10 DTNperf 1.x .. 7

1.11 Rationale of enhancements and amendments from v3.0 ... 7

2 Building Instructions (for all DTNsuite applications) .. 8

2.1 Integrated compilation .. 8

2.2 Sequential compilation .. 9

2.2.1 Abstraction Layer ... 9

2.2.2 Applications ... 10

3 DTNperf_3 Overview and Use. ... 10

3.1 DTNperf_3 Overview ... 10

3.1.1 DTNperf Client ... 11

3.1.2 DTNperf Server .. 12

3.1.3 DTNperf Monitor ... 12

3.1.4 The Abstraction Layer .. 12

3.2 DTNperf_3 Use .. 12

3.2.1 Basic applications .. 13

3.2.2 Performance evaluation in continuous and disrupted networks .. 13

3.2.3 Performance evaluation in partitioned networks: “data mule” communications 14

3.2.4 Interoperability tests ... 14

3.2.5 Disjoint use of client or monitor. ... 16

1 DTNPERF RELEASE NOTES

1.1 DTNPERF 3.6.2 (APRIL 2020)

1.1.1 Main novelties

Use of Abstraction Layer ver.1.7.0 (a few changes in the API syntax), which offers full compatibility

with both BPv7 and BPv6 in ION.

3

1.2 DTNPERF 3.6.1 (16 MAY 2019)

1.2.1 Main novelties

Use of Abstraction Layer ver.1.6.1 (a few changes in the API syntax)

1.3 DTNPERF 3.6.0 (22 NOVEMBER 2018)

1.3.1 Main novelties
From this release, DTNperf is part of the new DTNsuite, which consists of several DTN applications that make use of the

Abstraction Layer, plus the Abstraction Layer itself. From this version, here will be reported only the modifications of

the DTNperf application. For the Abstraction Layer and other DTNsuite components refer to companion documents.

DTNperf 3.6.0 has been partially redesigned:

 to take advantage of “al_bp_extB” functions included in the 1.6.0 version of the Abstraction Layer (see the

Abstraction Layer ver.1.6.0 companion guide)

 to improve compliance with Posix standard.

 to improve the logs (use of the new debug_print function)

 to simplify the code (no more forks)

Monitor. New option: “--rt-print[=filename]”, to print in real time human readable status report information

 This option prints a summary of each SR received on the screen (or on a file) in a format that is immediately

comprehensible to humans. It complements the .csv file(s) that is (are) vice versa devoted to “a posteriori”

processing by a spreadsheet. In simple experiments, involving few bundles, this new option can provide enough

information to distinguish between successes and failures, without recurring to a more time consuming a

posteriori examination of the .csv logs.

1.3.2 New features
The elimination of forks was made possible by eliminating the “internal monitor” in the client and the daemon modes

for the server and the monitor.

Internal monitor eliminated

 On the basis of authors’ experience, hardly ever is the bundle source the most suitable place where collecting

status report. Better alternatives are the destination or a third, external node. For this reason, and also to

eliminate the fork that launched the “internal monitor”, this feature has been dropped. The user interested in

collecting data on the source, can launch an external monitor on the same node in background, which is

equivalent to the old “internal monitror” feature, except that it remains active.

 “-- monitor option”

 This option is used to set the “report-to” bundle field (normally, but not necessarily, the EID of the external

monitor). In previous versions, in the absence of this option an “internal monitor” was started. Now, the

“report-to” is just set to null.

“daemon” options eliminated

 In previous versions, it was possible to launch DTNperf server and client as a daemon. To simplify the code this

possibility has been removed and the corresponding options as well (see the “help” of sever and monitor). The

interested user can obtain the same result by launching the server or the monitor in background.

4

Logs improved

 The output classification in three levels, debug=0 (default) and debug=1 and 2, has been redesigned to improve

consistency. Moreover, to improve code readability and allow a more flexible management of prints, the new

function debug_print has been used.

1.3.3 Bug fixed
 In the client, the synchronization of congestion control and sending threads has been redesigned following the

producer-consumer model, to eliminate a possible (but very infrequent) bug at the end of a session.

 In previous versions, when the client was launched with the rate based congestion control, with a Tx rate given

in bits (or kbit or Mbits) instead of in bundles per second, the time interval between two subsequent bundles

was often erroneously set to 0 on 64 bit machines. Although due to a trivial error, this bug could lead to a huge

burst of bundles generated at the same time, with a possible crash on 64 bit machines.

 Other minor bugs fixed.

1.4 DTNPERF 3.5.1 (2 MAY 2017)

1.4.1 Update to allow the compilation of AL with ION 3.6.0
 The name of one structure in the Abstraction Layer (AL) has been updated according to the new name used in

ION 3.6.0, to make it possible its compilation with ION 3.6.0 code. AL version number has been increased to

1.5.1. For this reason, this new version (DTNperf 3.5.1) cannot be compiled with previous version of ION.

1.5 DTNPERF 3.5.0 (21 JULY 2016)

1.5.1 New features
 DTNperf now supports also IBR-DTN.

 The Abstraction Layer (AL) API now supports also IBR-DTN, as well as DTN2 and ION. AL version number has

been increased to 1.5.0.

1.6 DTNPERF 3.4.0 (23 NOVEMBER 2015)

1.6.1 New features
Monitor. New option: “--rt-print[=filename]”, to print in real time human readable status report information

 This option prints a summary of each SR received on the screen (or on a file) in a format that is immediately

comprehensible to humans. It complements the .csv file(s) that is (are) vice versa devoted to “a posteriori”

processing by a spreadsheet. In simple experiments, involving few bundles, this new option can provide enough

information to distinguish between successes and failures, without recurring to a more time consuming a

posteriori examination of the .csv logs.

1.6.2 Bug fixed
 Abstraction Layer API. A bug preventing a correct data exchange between nodes on 32 and 64-bit architectures

has been fixed.

5

1.7 DTNPERF 3.3.5 (14 APRIL 2015)

1.7.1 New features
Alternate URI scheme registration always possible via the “--force-eid <[DTN|IPN]” option

 Server and Monitor: forced registration on the alternate URI scheme now possible also on DTN2 (as well as in

ION as before), via “--force-eid DT|IPN” option.

 Client: in ION the previous automatic selection of the registration URI scheme based on the scheme of

destination has been disabled. Now the client registers itself as both the server and monitor do, i.e. by default

as dtn in DTN2 and as ipn in ION; in both cases the alternate scheme can be selected through the --force-eid

option.

All modes. New option:“--ipn-local <num>” (DTN2 only).

 When forcing the ipn scheme on a DTN2 node (--force-eid IPN) it is always necessary to let DTNperf_3 know

the ipn number of the node with this option.

Client. New option: “--no-bundle-stop”

 To prevent the client from sending the bundle stop (and force-stop) to the monitor at the end of the session.

Monitor. New option: “--oneCSVonly”

 To generate a unique CSV (Comma Separated Values) file, instead of as many files as concurrent client instances

(sessions).

Server: new name for DTNperf ACKs”

 DTNperf ACKs, sent by the server to the client to acknowledge reception of a data bundle are now saved in

/tmp as “dtnperfack_#”, where # denotes a progressive integer. This to make always shorter than 32B the

DTNperf ACK filename, as requested in ION. These ACKs are automatically cancelled.

New name for bundle payloads

 Bundle payloads in ION are now saved in /tmp as “ion_PID_#”, where PID is the Process IDentifier and # is a

progressive number DTNperf ACKs, sent by the server to the client to acknowledge reception of a data bundle

are now saved in /tmp as “dtnperfack_#”, where # denotes a progressive integer. This to make always shorter

than 32B the DTNperf ACK filename, as requested in ION.

Bundle payloads automatically cancelled (ION only)

 Bundles payloads are now automatically deleted (at present only in ION) to limit storage consumption.

Extended scope of the “-e” monitor option

 The monitor forces the closure of a .csv file when the time elapsed from the last reception of a Status Report

associated to it becomes longer than the “session threshold”. Analogously, when the time elapsed between

the reception of the Bundle Stop and the reception of all delivered status report becomes longer than the

“closing threshold”. In DTN2 the default value for both is the bundle lifetime of the client session associated

with the .csv file, while in ION we had two different fixed values. Now these two have been unified, and the

default (120s) can be overridden by means of the –e option.

Sub-sub-version number added (e.g. 3.3.5)

6

1.7.2 Bug fixed
Client: -W (window-based congestion control) caused client crashes (in versions included in the ION package). Now

fixed.

 In previous versions the –W (window based congestion control) option did not work correctly. Now the

problem has been fixed and users can take advantage of both –W and –R congestion control modes.

Joint use of the -F and –crc client options

 A bug prevented file reconstruction on the server if the client jointly useed the –F (file Tx mode) and –crc

options. Now the bug has been fixed and crc check can be enabled without interfering with the –F option. By

the way, note that if the bundle that contains the whole file, or one (or more) of the bundles that contain a

segment of a segmented file does not pass the crc check, the bundle is discarded and the file is not saved by

the server, as it could not be correctly reconstructed. This in accordance to the fact that the client does not

perform bundle retransmissions.

Monitor: In peculiar cases, the .csv file closure was anticipated. Now fixed.

AL API. One API of the AL has been changed.

 This requires the installation of the latest AL version before installing DTNperf 3.3.x

1.8 DTNPERF 3.0.0 (DTNPERF_3)
Authors: Michele Rodolfi, Anna d’Amico, Carlo Caini (project supervisor).

Although the aim is the same as previous versions, the project has been deeply redesigned and the code totally

rewritten.

Three modes: client, server and monitor (new). They correspond to source, destination and “report-to” dtn nodes. The

monitor, in charge of collecting status reports in a .csv file, can be “internal” (on the source), or “external” (on a different

node). NOTE: the internal monitor has been eliminated from 3.6.0, see release notes).

Server and external monitors can manage multiple instances of the client.

Three Tx modes: time, data and file. The first two are the same as before. The file mode is now much more robust as

files segmented in multiple bundles can now be reassembled on the server even if received in disorder (but without

losses).

Two congestion control methods: window based and rate based (new).

In the window based congestion control, bundle sent are now acknowledged by bundle ACKs sent by the server and no

more by delivered status reports. In the rate based congestion control bundles are not acknowledged.

Support of both DTN2 and ION. The DTNperf application runs on top of a new “Abstraction Layer” (AL), which has the

aim of decoupling the DTNperf application from the underlying BP implementation. The AL can be compiled for either

DTN2, ION or both. DTNperf calls the API of the AL (or “grey” APIs), which in turns calls the API of either DTN2 or ION. If

compiled for both, the choice of DTN2/ION APIs is made at run time, accordingly to the implementation that is actually

running.

See the other sections (DTNperf compilation instructions, DTNperf general description and example of use) for further

information.

1.9 DTNPERF 2.X (DTNPERF_2)
Authors: Piero Cornice, Marco Livini, Carlo Caini (project supervisor)

7

Window based congestion control added. With the –W parameter it is now possible to set the maximum amount of

bundles in flight (sent but not acknowledged; “ACKs” are delivered status report). This is necessary to fill the pipe and

to obtain accurate goodput evaluation.

Status reports of all machines are collected by the dtnperf client (the bundle source) in a .csv file, for later analysis on a

spreadsheet.

Possibility to send bundles with dummy payload for either an interval time (time mode) or a specified amount of data

(data mode).

Possibility to send a file, with file segmentation into multiple bundles of desired dimension (file mode).

The same version developed for GNU/Linux is ported with minimal changes on MAEMO OS for Nokia N900 smartphones

(by Francesco Baldassarri). It is fully interoperable with the 2.x version for Linux machines.

Bugs removed.

1.10 DTNPERF 1.X
Author: Piero Cornice

First version of DTNperf, intended to be a DTN equivalent of the Iperf tool for DTN network (DTN2 implementation).

DTNperf client sends bundles of wanted dimension and dummy payload to dtnperf server, for a specified time interval.

Only one bundle in flight allowed (“in flight” means sent but not acknowledged yet; “ACKs”are delivered status report).

1.11 RATIONALE OF ENHANCEMENTS AND AMENDMENTS FROM V3.0
DTNperf_3 aims, design and use have been all described in details in the following paper, to which the user is referred

as DTNperf_3 documentation. Some example of use are also reported at the end of this document.

 C. Caini, A. d’Amico and M. Rodolfi, “DTNperf_3: a Further Enhanced Tool for Delay-/Disruption- Tolerant

Networking Performance Evaluation”, in Proc. of IEEE Globecom 2013, Atlanta, USA, December 2013, pp. 3009

- 3015. Digital Object Identifier: 10.1109/GLOCOM.2013.6831533

The notes below are intended to complement this document, as they describe the rationale of the most important

enhancements introduced after its publication.

IBR-DTN support

From DTNperf v3.5 and AL v1.5 the support of BP implementation has been extended to IBR-DTN.

Alternate URI scheme registration always possible via the “--force-eid <[DTN|IPN] option

If DTNperf_3 is compiled for multiple BP implementation (at least two among DTN2, ION and IBR-DTN), the choice of

DTN2/ION/IBR-DTN APIs is made at run time, accordingly to the implementation that is actually running, i.e. “dtn” in

DTN2 and IBR-DTN, or “ipn” in ION. It is always possible to force the alternate scheme registration with the –force-eid

[DTN|IPN] option.

New option:“--ipn-local <num>” (DTN2 only).

When forcing an ipn registration on DTN2 it is compulsory to tell dtnperf the ipn node number of the registration, as in

DTN2 configuration file, e.g. /etc/dtn.conf, there is not any notions of this ipn alias. This must be done with the new

option “–ipn-local #” associated to “–force-eid IPN”. Vice versa, when forcing a dtn registration in ION (--force-eid DTN)

there is no need of indicating the dtn name as the host name of the machine is automatically used to derive the dtn

name (e.g host “vm1” becomes “dtn://vm1.dtn”.

8

Client. New option: “--no-bundle-stop”.

By default, the client sends a bundle STOP to the “report-to:” address, to inform the monitor that the bundle

transmission has ended and that n bundles were sent. The monitor uses this information to wait for n delivered status

reports before closing the .csv file where all status reports concerning the same client instance are collected (if a bundle

or a delivered SR is lost, a timeout force the closure of the .csv file). In some circumstances (e.g. routing studies) it may

be preferable not to have the bundle stop sent. The new client option “–no-bundle-stop” has this aim. The user can

either force the closure of the .csv file by pressing ctrl+c on the monitor or wait for the timeout expiration.

Monitor. New option: “--oneCSVonly”

As it is perfectly possible to have a monitor always on, working for multiple instances of the client running either on the

same or in other nodes, the monitor by default collects status reports referring to bundle generated by different client

instances on different files, as said above. In some circumstances, however, it may be preferable to have all status

reports collected in the same file. To this end the monitor option “--oneCSVonly” has been introduced. The .csv file is

saved only when either the user press ctrl+c or a timeout expires (in case no new status reports are received form a

while). This feature may be useful when dealing with multiple priorities (e.g. in routing studies), as one different instance

of the client must be started for each priority; in this case, all bundles logically belong to the same experiment, although

generated by concurrent instances, thus the corresponding status reports should be preferably collected in just one file.

Monitor. New option: “--rt-print[=filename]”,

This option prints a summary of each SR received on the screen (or on a file) in a format that is immediately

comprehensible to humans. It complements the .csv file(s) that is (are) vice versa devoted to “a posteriori” processing

by a spreadsheet. In simple experiments, involving few bundles, this new option can provide enough information to

distinguish between successes and failures, without recurring to a more time consuming a posteriori examination of the

.csv logs.

2 BUILDING INSTRUCTIONS (FOR ALL DTNSUITE APPLICATIONS)

The DTNsuite package consists of a main directory, called “dtnsuite” with one subdirectory for each application, plus

one for the Abstraction Layer. For example, the DTNperf code is in “dtnsuite/dtnperf”. As all applications are based on

the Abstraction Layer API, before compiling them it is necessary to compile the AL. For the user convenience it is possible

to compile the AL and all applications at once (the drawback is that in this case it is more difficult to interpret possible

error messages). Both ways are detailed below, starting from the latter, which is preferable for normal users.

Note that the compilation of DTNbox requires the presence of the SQLight package on the host. If not present, you must

install it before compilation (“sudo apt-get update, sudo apt-get install libsqlite3-dev”, in Ubuntu). Otherwise, you can

comment the DTNbox compilation line in the /dtnsuite/Makefile.

2.1 INTEGRATED COMPILATION
It is possible to compile both AL and all DTNsuite applications in the right sequence with just one simple command. To

this end, the Makefile in the “dtnsuite” directory calls the AL Makefile and the DTNsuite application Makefiles in

sequential order.

The commands below must be entered from the “dtnsuite” directory. It is necessary to pass absolute paths to DTN2,

ION and IBRDTN. The user can compile for one or more ION implementations as shown in the help:

for DTN2 only:

make DTN2_DIR=<DTN2_dir_absolute_path>

for ION only:

9

make ION_DIR=<ION_dir_absolute_path>

for IBR-DTN (>=1.0.1) only:

$ make IBRDTN_DIR=<IBRDTN_dir_absolute_path>

for all:

make DTN2_DIR=<DTN2_dir_absolute_path> ION_DIR=<ion_dir_absolute_path>

IBRDTN_DIR=<IBRDTN_dir_absolute_path>

The AL libraries and the DTNsuite applications will have either the extension “_vION” or “_vDTN2” or _vIBRDTN, if

compiled for one specific implementation, or no extension if for all.

It is also possible to compile for just two BP implementations, by passing only two paths in the command above.

Finally, the user needs to install the program in the system directory (/usr/local/bin) with the commands (with root

permissions)

make install

ldconfig

Example:

<path to>/dtnsuite$ make DTN2_DIR=<path to>/sources/DTN2 ION_DIR=<path

to>/sources/ion-open-source IBRDTN_DIR=<path to>/sources/ibrdtn

<path to>/dtnsuite$ sudo make install

<path to>/dtnsuite$ sudo make ldconfig

For recalling the help:

make

2.2 SEQUENTIAL COMPILATION
For a better control of the compilation process (e.g. if for whatever reasons it is necessary to change the AL or the

specific application Makefiles), it is possible to compile AL and one or more DTNsuite applications sequentially, with

independent commands.

2.2.1 Abstraction Layer
The Abstraction Layer (AL) must be compiled first; the AL compilation can be performed by means of the “make”

command entered from the AL directory.

The possibilities are the same as those shown for the integrated compilation and will not reported here for brevity. Even

in this case the AL will have either the extension “_vION” or “_vDTN2” or _vIBRDTN, if compiled for one specific

implementation, or no extension if for all.

By default the AL library are static. If the default is overridden to dynamic (by modifying the AL Makefile), then the user

needs to install the library in the system directory with the command (with root permissions):

make install

ldconfig

Example:

<path to>/dtnsuite/al_bp$ make DTN2_DIR=<path to>/sources/DTN2 ION_DIR=<path

to>/sources/ion-open-source IBRDTN_DIR=<path to>/sources/ibrdtn

10

<path to>/dtnsuite/al_bp# sudo make install

<path to>/dtnsuite/al_bp# sudo ldconfig

2.2.2 Applications
Once the AL has been compiled (and installed if dynamic), each specific application can be compiled in an analogous

way. It is just necessary to add the path to the AL-BP (in bold in the example below, for DTN2 only):

make DTN2_DIR=<DTN2_dir> AL_BP_DIR=<al_bp_dir>

Note that it is necessary to have previously compiled AL_BP for exactly the same ION implementations, as the library

with the corresponding extensions must be already present in AL_BP_DIR (vION” or “_vDTN2” or vIBRDTN, or no

extension at all if the support is for all implementations).

Finally, the user needs to install the program in the system directory (/usr/local/bin) by entering the same commands

used for both the integrated compilation and the AL.

make install

make ldconfig

Example (for DTNperf)e:

<path to>/dtnsuite/dtnperf$ make DTN2_DIR=<path to>/sources/DTN2 ION_DIR=<path

to>/sources/ion-open-source AL_BP_DIR=<path to>/UniboDTN/al_bp

<path to>/dtnsuite/dtnperf$ sudo make install

<path to>/dtnsuite/dtnperf$ sudo ldconfig

The “dtnperf” executable will have either the extension “_vION” or “_vDTN2” or _vIBRDTN, if compiled for one specific

implementation; no extension if compiled for all, as always.

3 DTNPERF_3 OVERVIEW AND USE.

DTNperf_3 aims, design and use have been all described in details in the following paper, to which the user is referred

as DTNperf_3 primary source of documentation.

 C. Caini, A. d’Amico and M. Rodolfi, “DTNperf_3: a Further Enhanced Tool for Delay-/Disruption- Tolerant

Networking Performance Evaluation”, in Proc. of IEEE Globecom 2013, Atlanta, USA, December 2013, pp. 3009

- 3015. Digital Object Identifier: 10.1109/GLOCOM.2013.6831533

The following notes aims to provide the user with a brief overview about DTNperf_3 and with a concise guide of possible

uses, with many syntax examples.

3.1 DTNPERF_3 OVERVIEW
DTNperf_3 has three operating modes: client, server and monitor. The client generates and sends bundles, the server

receives it and the monitor collects status reports in .csv files. Client, server and monitor correspond to the BP addresses

“from”, “to” and “report-to”.

11

Figure 1: DTNperf operating modes: client, server and monitor.

3.1.1 DTNperf Client

SYNTAX: dtnperf --client -d <dest_eid> <[-T <s> | -D <num> | -F <filename>]>

[-W <size> | -R <rate>] [options]

The most important parameters are explained below. The full list of options can be obtained with

the command “dtnperf --client --help”.

3.1.1.1 Tx modes
The client has three mutually exclusive Tx modes to send bundles to the server. In the time-mode (-T), a series of bundles

with a dummy payload of desired dimension (-P option) is generated and “sent”, i.e. passed to the BP daemon for

transmission, until the pre-set transmission time elapses. Data-mode (-D) is the same as time-mode, except that the

bundle generation process ends after a given amount of data has been “sent” to BP, and not after a time interval. File-

mode (-F) differs from data-mode because a file is transferred, instead of dummy data. A noteworthy feature is the

possibility to split the file into multiple bundles of desired dimension.

3.1.1.2 Congestion control (window- or rate- based)
Independently of the Tx mode, there are two alternative congestion control policies available: window-based (-W) and

rate-based (-R). In the former, the “congestion window” W represents the maximum number of bundles in-flight (i.e.

sent but not acknowledged). The mechanism is similar to the TCP congestion window, but: 1) W has a fixed dimension;

2) in-flight bundles can be non-consecutive (to cope with non-ordered delivery of BP); 3) there are not retransmissions

(acknowledgments are used only to trigger the transmission of new bundles). DTNperf_3 has enhanced this function

with respect to previous versions, by replacing “delivered” status reports generated by the BP of the destination node,

by ACK bundles specifically created by the DTNperf_3 server, as acknowledgments of bundles sent. This innovation is

essential to decouple the “report-to” from the source node, thus allowing the monitor to be launched on a node

different from the source.

Although the window-based mechanism is generally useful, in some cases, e.g. to emulate streaming traffic, it would be

preferable to generate traffic at constant rate. For this reason, in DTNperf_3 a rate-based congestion control has been

added. In response to rate-based traffic the server does not generate any ACKs, like UDP.

12

3.1.2 DTNperf Server
The server receives bundles, acknowledges them if sent in window-based mode, and reassembles bundle payloads if a

file is transferred.

SYNTAX: dtnperf --server [options]

In this third version, one instance can serve multiple clients in parallel. Moreover, the file transfer is now robust against

disordered bundle delivery (incoming payloads are buffered until either the entire file is received or a timeout expires).

3.1.3 DTNperf Monitor
The monitor receives and collects status reports and some DTNperf control bundles. It can be launched either as an

independent process on an external node (external monitor), in which case it can serve many concurrent clients, or as

a “child” process of a client (dedicated monitor), in which case it serves only its “parent” client. The syntax to launch an

external monitor is the following:

SYNTAX: dtnperf --monitor [options]

The monitor creates a different .csv log file for each DTNperf client session (i.e. one client “launch”). This file contains

all status reports generated by all nodes during the session and it can be directly imported into a spreadsheet for further

analysis.

3.1.4 The Abstraction Layer
To facilitate interoperability tests, DTNperf_3 has been designed to be independent of the BP implementation. It relies

on the “Abstraction Layer”, i.e. a library expressly designed to provide a common interface for DTNperf towards the

APIs of different BP implementations.

DTNperf

Abstraction layer
(compiled for DTN2

and ION and IBR-
DTN)

IBR-DTN BP

Which BP
active?

DTN2 BP

DTNperf

Abstraction layer
(compiled for DTN2/
ION/IBR-DTN only)

DTN2/ION/IBR-DTN
BP ION BP

Figure 2: DTNperf compatibility. a) DTN2/ION/IBR-DTN only, b) all of them with API call selection at run time.

The present version of the AL supports DTN2, ION and IBR-DTN, but it could be further extended to other

implementations. If the AL is compiled either for DTN2 or ION, the compiled version of DTNperf, with postfix _vION,

vDTN2, or vIBR-DTN, can run only on top of DTN2 or ION or IBR-DTN (Figure 2a). If the AL is compiled for all, DTNperf

(no postfix) can run on top of all, as the switch between DTN2, ION and IBR-DTN API calls is performed at run time

(Figure 2b). For further information on the AL see the companion guide.

3.2 DTNPERF_3 USE
Although derived from authors’ experience on space communications, DTNperf_3 has a general scope aiming at

embracing most DTN applications. In the examples below, the use of DTNperf_3 in some typical DTN applications is

presented, assuming that we have three DTN nodes, vm1, vm2 and vm3 when the dtn scheme is adopted, or nodes 1,

13

2 and 3 when the ipn scheme is preferred, as source, destination and external monitor. We will focus on client syntax,

as the server and the monitor can always be launched with the following commands:

dtnperf - -server - -debug=1

dtnperf - -monitor - -debug=1

3.2.1 Basic applications

3.2.1.1 Ping
To ping vm2 from vm1 (if the server is registered with the dtn scheme)

dtnperf - -client -d dtn://vm2.dtn -T 15 –W 1 - -debug=1

if the server is registered with the ipn scheme; note that the demux token of the server is always 2000)

dtnperf - -client -d ipn: 2.2000 -T 15 –W 1 - -debug=1

With this command vm1 will send bundles of 50 kB (default) to vm2 for 30s (-T15), one by one (-W1 allows just one

bundle in flight). The short default lifetime (60s) is useful to force the deletion of undelivered bundles, which could

interfere on subsequent experiments.

From 3.6.0 on, it is necessary to add the option “- - monitor” to collect status reports (the fork for the internal monitor

has been removed).

3.2.1.2 Trace
To trace the route of a bundle:

dtnperf - -client –d dtn://vm2.dtn –D100kB -P100kB –W1 –C - f –r - -monitor

dtn:/vm2.dtn

This command sends a single bundle of 100 kB as the total amount of data (-D100kB) coincides with the bundle payload

(-P100kB). The custody option is on (-C) and some optional status reports are requested (forwarded, -f, received, -r).

From the .csv file generated by an external monitor (possibly launched in background) on vm2 is straightforward to

trace the route of the bundle sent.

3.2.1.3 File transfer.or
To transfer a file segmented into multiple bundles of desired dimension:

dtnperf - -client –d dtn://vm2.dtn –F picture.jpg –P 100kB –W4

Here a file is sent (-F) instead of dummy data. The dimension of the bundle payload (-P100kB) is the dimension of

segments into which the file will be split. This feature is useful to match limited contact volumes as an alternative to

proactive fragmentation. Note however that file segmentation is carried out at application layer (by DTNperf), while

bundle fragmentation is performed at BP layer (by the BP daemon).

From 3.6.0 on, it is necessary to add the option “-m, - - monitor” to collect status reports (the fork for the internal

monitor has been removed).

3.2.2 Performance evaluation in continuous and disrupted networks

3.2.2.1 Goodput (macro-analysis)
Goodput (data_ACKed/time_elapsed) evaluation makes sense especially if the DTN network is not partitioned (e.g. in

GEO satellite communications, where the challenges are long delay and losses). To this end, it is necessary to send

dummy bundles with the window-based congestion control for a reasonable amount of time to reach and maintain a

steady state. The following command could be suitable in the case of a hypothetical GEO satellite hop:

14

dtnperf - -client -d dtn://vm2.dtn -T 30 –P 1MB –W 4 –l 60 - m dtn:/vm2.dtn

With this command vm1 will send bundles to vm2 for 30 s (-T30), i.e. for a much longer interval than the typical GEO

RTT (600ms including processing time). To fill the (likely) large bandwidth-delay product and to reduce the impact of

bundle overhead, bundles are large (-P1MB) and the congestion window W is greater than one (-W4). The same

experiment should be repeated increasing W until the goodput reaches a maximum. Note that goodput evaluation

should always be complemented by the analysis of status reports, collected in the example by an external monitor

launched on vm2 (the destination), to control the regularity of the bundle flow and to recognize the reasons of the

macro-results achieved.

3.2.2.2 Status report analysis (micro-analysis).
The evaluation of goodput is useful when links are continuous or only moderately disrupted (e.g. in GEO satellites with

mobile terminals). As the chances of disruption increase (e.g. LEO satellites, deep space communications), the study of

individual bundles (i.e. micro-analysis) becomes more important than goodput. A possible command in the presence of

disruption is:

dtnperf - -client -d dtn://vm2.dtn –m dtn://vm3.dtn –D30MB –P 1 MB –W4 –l

200 (server and monitor registered with dtn scheme)

dtnperf - -client -d ipn:2.2000 –m ipn:3.1000 –D30MB –P 1 MB –W4 –l 200

(server and monitor registered with the ipn scheme; the demux tokens are

always 2000 and 1000 respectively)

This command dispatches 30 bundles of 1 MB each, with a limit of 4 bundles in flight. Status reports are collected

(possibly in real time by means of dedicated links) by an external monitor (-m option) on vm3. Note that the lifetime

has been increased to 200s (-l200) to cope with disruption. Moreover, Data mode (-D30) is preferable because

disruption makes uncertain the actual duration of bundle transfer.

3.2.2.3 Status report analysis of streaming traffic.
To emulate a streaming source a possible command is:

dtnperf - -client -d dtn://vm2.dtn -T30 –P100kB –R2b –m dtn://vm3.dtn

This command generates a stream of 100 kB bundles for 30s, at 2 bundles per second (-R2b). No ACKs are generated by

the server, as the congestion control is rate-based.

3.2.3 Performance evaluation in partitioned networks: “data mule” communications
One of the most evident advantages of DTN architecture is the possibility to cope with network partitioning. The

extreme case is that of “data mule” communications, where an intermediate node (the “mule”, or “ferry”) is

alternatively connected, thanks to its movement, either to the sender or to the destination. In this case, the evaluation

of goodput is useless, while the microanalysis is essential. A possible command is:

dtnperf - -client -d dtn://vm2.dtn –m dtn://vm3.dtn –D 10 MB –P1 MB –W10 –l

200 -- debug=1

The external monitor (-m option) is very useful here, especially if connected to other nodes through dedicated links,

which can be easily carried out in a lab testbed, since links used to transfer data are only occasionally active. Note that

by setting the window to the total number of bundles (10 in the example) these are sent in one burst, which can be

preferable in this kind of experiments, in order not to have to wait for ACKs (once the burst of data is sent, the user can

interrupt the client by pressing ctrl+c). Alternatively, the user can take advantage of the rate-based congestion control,

which does not imply any ACKs (e.g. by setting -R10b instead of –W10).

3.2.4 Interoperability tests
Thanks to the AL library, which now (v1.5) includes IBR-DTN support, DTNperf_3 (v3.5) can run on top of either DTN2,

ION or IBR-DTN BP. If compiled for multiple implementations, the very same executable can be used, as the choice

15

between the different implementation API is made at run time. This feature makes DTNperf_3 particularly suitable for

carrying out interoperability tests among different implementations. To this end, a key requirement is the capability of

coping with both the different EID URI schemes, “dtn” and “ipn”. For example, DTN2 and IBR-DTN prefer the “dtn”

scheme, ION the “ipn” one. To facilitate experiments, not only can DTNperf_3 register itself with the preferential

scheme, but also with the alternate URI scheme (dtn in ION, ipn in DTN2 and IBR-DTN), thus allowing full interoperability

(in particular also with DTN2 “not NASA patched” nodes unable to use the ipn scheme correctly). In brief, DTNperf_3

can cope with every combination of DTN2, ION and IBR-DTN nodes, independently of the EID URI scheme adopted by

these. For example, the following command can be launched on a machine running either DTN2 or ION or IBR-DTN

(server registered with the “dtn2 scheme, monitor with the “ipn” scheme):

dtnperf - -client -d dtn://vm2.dtn –m ipn:3.1000 –D30MB –P 1 MB –W4 –l 200

Of course, a prerequisite for DTNperf_3 interoperability is that all DTN2, ION and IBR-DTN configuration files are

correctly configured for supporting interoperability at bundle layer, which is not trivial. Moreover, it is worth noting that

the “bleeding edge” version of DTN2, i.e. the development version, requires a few patches developed by NASA to

improve the basic and buggy support of the ipn scheme provided by the bleeding edge. Without these patches, there is

not fully interoperability at BP layer between DTN2 and ION.

To help the user interested in interoperability, a few advanced examples involving the use of the alternate scheme in

the registration phase, are reported below.

3.2.4.1 Dtnperf running on top of DTN2: registration as “ipn” with node number 4.
In DTN2 it is necessary to use 2 options: “force-eid” to override the dtn default and “ipn-local” to assign the node

number.

The client will register as ipn:4.x, with x the ipn demux token number automatically assigned by DTNperf. The

registration is always independent of the destination scheme (dtn in the former example, ipn in the latter).

dtnperf --client dtn://rita.dtn --D200k --R1b --force-eid IPN --ipn-local 4

--debug=2.

dtnperf --client ipn:5.2000 --D200k --R1b --force-eid IPN --ipn-local 4 --

debug=2.

The server will register itself as ipn:4.2000 with the following command:

dtnperf --server --force-eid IPN --ipn-local 4 --debug=2

The monitor will register itself as ipn:4.100 with the following command

dtnperf --monitor --force-eid IPN --ipn-local 4 --debug=2

3.2.4.2 Dtnperf running on top of ION: registration as “dtn”.
In ION it is necessary to use only the “force-eid” option to override the ipn default. The dtn node name is derived

automatically by ION starting from the node hostname (no possibility of overriding this). Thus the DTNperf client on

“susy” (hostname) will register as dtn://susy.dtn/x, with x the dtn demux token. The registration is always

independent of the destination scheme (ipn in the example below):

dtnperf --client ipn:5.2000 --D200k --R1b --force-eid DTN --debug=2 .

3.2.4.3 Dtnperf running on top of IBR-DTN, registration as “ipn”.
In IBR-DTN it is necessary to use only the “force-eid” option to override the dtn default. In fact, by contrast to DTN2, in

IBR-DTN the ipn EID, included the node number is set in the configuration file. The client will register as ipn:4.x, with x

the ipn demux token number). The registration is always independent of the destination scheme (dtn in the example

below):

dtnperf --client dtn://rita.dtn --D200k --R1b --force-eid DTN --debug=2 .

16

3.2.5 Disjoint use of client or monitor.
DTNperf modes (client, server, monitor) were conceived to work together. However, it is perfectly possible, and

sometimes also convenient, to use the client (rate based) or the monitor in a fully autonomous way.

3.2.5.1 Client
For example, as the client in rate based congestion control does not need any feedback form the server, it can be used

autonomously as a powerful and flexible source of bundles. The user can specify the bundle dimension, the total amount

of data, the Tx rate (either in bundle/s or bit/s, at his choice), and all bundle flags (delivered is always on). No more need

of custom complex scripts.

3.2.5.2 Monitor
The monitor can be used in an independent way as well, to collect all status reports. It is enough to set its EID as report-

to in the bundle source, which can be whatsoever, i.e. different from a DTNperf client. In case of multiple sources, the

option “--oneCSVonly” can be useful to generate a unique CSV (Comma Separated Values) file, instead of as many files

as concurrent sources. It can also be used as a real-time monitor with the option “--rt-print[=filename]”. Status reports

actually provides the user with a complete “telemetry” at bundle layer. In most cases DTNperf monitor allows the user

to get rid of time consuming analysis of log files. The .csv file(s) generated by the monitor can be directly imported into

a spreadsheet for deeper (and much faster) analysis.

