
1

DTNfog
DTNfog is a program that aims to implement a “fog” architecture in a DTN environment. The DTNfog node receives a

.tar file containing a file and a command to be applied on the file by a node of lower hierarchical level. If the DTNfog node
is able to execute the command it gives the response back, otherwise it forwards the request to the upper layer, and so
on. Files can be transferred either by TCP or by Bundle Protocol. It has been designed for challenged networks, including
a future Interplanetary Internet.

It is part of the DTNsuite, which consists of several DTN applications making use of the Abstraction Layer, plus the
Abstraction Layer itself.

Being built on top of the Abstraction layer, DTNproxy is compatible with all the most important free bundle protocols

implementations (DTN2, ION, IBR_DTN).

This document aims at providing the user with:

1) release notes

2) building instructions

3) a brief overview and a concise user guide.

Authors: Lorenzo Tullini (lorenzo.tullini@studio.unibo.it), Carlo Caini (Academic supervisor, (carlo.caini@unibo.it)

Table of Contents

1 DTNfog Release Notes ... 2

1.1 DTNfog 1.0.0 (23 June 2019) ... 2

1.1.1 Compilation .. 2

2 Building Instructions (for all DTNsuite applications) ... 2

2.1 Integrated compilation .. 2

2.2 Sequential compilation ... 3

2.2.1 Abstraction Layer .. 3

2.2.2 Applications .. 3

3 DTNfog Overview and Guide of Use. ... 4

3.1 Overview ... 4

3.2 The DTNfog architecture ... 4

3.3 Structure of the archive “.tar” file ... 5

3.3.1 The “command.cmd” file .. 6

3.3.2 The “route.rp” file .. 6

3.3.3 The “report.rp” file ... 6

3.3.4 The “result.rs” file ... 6

3.4 Use .. 7

3.4.1 Syntax ... 7

3.4.2 Configuration file .. 7

mailto:lorenzo.tullini@studio.unibo.it
mailto:carlo.caini@unibo.it

2

3.4.3 The IoT node ... 8

3.5 An example of use ... 8

1 DTNFOG RELEASE NOTES

1.1 DTNFOG 1.0.0 (23 JULY 2019)

1.1.1 Compilation
DTNfog can be compiled with exactly the same modality as the other application of the DTNsuite. The instructions,

commons to all DTNsuite applications, are given below.

2 BUILDING INSTRUCTIONS (FOR ALL DTNSUITE APPLICATIONS)

The DTNsuite package consists of a main directory, called “dtnsuite” with one subdirectory for each application, plus

one for the Abstraction Layer. For example, the DTNperf code is in “dtnsuite/dtnperf”. As all applications are based on

the Abstraction Layer API, before compiling them it is necessary to compile the AL. For the user convenience it is possible

to compile the AL and all applications at once (the drawback is that in this case it is more difficult to interpret possible

error messages). Both ways are detailed below, starting from the latter, which is preferable for normal users.

2.1 INTEGRATED COMPILATION
It is possible to compile both AL and all DTNsuite applications in the right sequence with just one simple command. To

this end, the Makefile in the “dtnsuite” directory calls the AL Makefile and the DTNsuite application Makefiles in

sequential order.

The commands below must be entered from the “dtnsuite” directory. It is necessary to pass absolute paths to DTN2,

ION and IBRDTN. The user can compile for one or more ION implementations as shown in the help:

for DTN2 only:

make DTN2_DIR=<DTN2_dir_absolute_path>

for ION only:

make ION_DIR=<ION_dir_absolute_path>

for IBR-DTN (>=1.0.1) only:

$ make IBRDTN_DIR=<IBRDTN_dir_absolute_path>

for all:

make DTN2_DIR=<DTN2_dir_absolute_path> ION_DIR=<ion_dir_absolute_path>

IBRDTN_DIR=<IBRDTN_dir_absolute_path>

The AL libraries and the DTNsuite applications will have either the extension “_vION” or “_vDTN2” or _vIBRDTN, if

compiled for one specific implementation, or no extension if for all.

It is also possible to compile for just two BP implementations, by passing only two paths in the command above.

Finally, the user needs to install the program in the system directory (/usr/local/bin) with the commands (with root

permissions)

make install

ldconfig

3

Example:

<path to>/dtnsuite$ make DTN2_DIR=<path to>/sources/DTN2 ION_DIR=<path

to>/sources/ion-open-source IBRDTN_DIR=<path to>/sources/ibrdtn

<path to>/dtnsuite$ sudo make install

<path to>/dtnsuite$ sudo make ldconfig

For recalling the help:

make

2.2 SEQUENTIAL COMPILATION
For a better control of the compilation process (e.g. if for whatever reasons it is necessary to change the AL or the

specific application Makefiles), it is possible to compile AL and one or more DTNsuite applications sequentially, with

independent commands.

2.2.1 Abstraction Layer
The Abstraction Layer (AL) must be compiled first; the AL compilation can be performed by means of the “make”

command entered from the AL directory.

The possibilities are the same as those shown for the integrated compilation and will not reported here for brevity. Even

in this case the AL will have either the extension “_vION” or “_vDTN2” or _vIBRDTN, if compiled for one specific

implementation, or no extension if for all.

By default the AL library are static. If the default is overridden to dynamic (by modifying the AL Makefile), then the user

needs to install the library in the system directory with the command (with root permissions):

make install

ldconfig

Example:

<path to>/dtnsuite/al_bp$ make DTN2_DIR=<path to>/sources/DTN2 ION_DIR=<path

to>/sources/ion-open-source IBRDTN_DIR=<path to>/sources/ibrdtn

<path to>/dtnsuite/al_bp# sudo make install

<path to>/dtnsuite/al_bp# sudo ldconfig

2.2.2 Applications
Once the AL has been compiled (and installed if dynamic), each specific application can be compiled in an analogous

way. It is just necessary to add the path to the AL-BP (in bold in the example below, for DTN2 only):

make DTN2_DIR=<DTN2_dir> AL_BP_DIR=<al_bp_dir>

Note that it is necessary to have previously compiled AL_BP for exactly the same ION implementations, as the library

with the corresponding extensions must be already present in AL_BP_DIR (vION” or “_vDTN2” or vIBRDTN, or no

extension at all if the support is for all implementations).

Finally, the user needs to install the program in the system directory (/usr/local/bin) by entering the same commands

used for both the integrated compilation and the AL.

make install

make ldconfig

Example (for DTNperf):

4

<path to>/dtnsuite/dtnperf$ make DTN2_DIR=<path to>/sources/DTN2 ION_DIR=<path

to>/sources/ion-open-source AL_BP_DIR=<path to>/UniboDTN/al_bp

<path to>/dtnsuite/dtnperf$ sudo make install

<path to>/dtnsuite/dtnperf$ sudo ldconfig

The “dtnperf” executable will have either the extension “_vION” or “_vDTN2” or _vIBRDTN, if compiled for one specific

implementation; no extension if compiled for all, as always.

3 DTNFOG OVERVIEW AND GUIDE OF USE.

3.1 OVERVIEW

DTNfog is a DTN application that aims to extend the “Fog Computing” model to challenged networks. DTNfog allows the

user to build a hierarchical architecture where each DTN node, running DTNfog, can execute a pre-defined set of

commands, specific to each node. We can have multiple intermediate (“fog”) layers between nodes belonging to the

lowest (IoT) and the highest layer (Cloud). Each DTNfog node can receive/transmit either via TCP (when the

corresponding link is not challenged) or via BP (in the presence of challenges). In particular, the possibility of receiving

via TCP, allows DTNfog nodes of the lowest fog layer to be reached even by IoT nodes unable to use the Bundle Protcol

(i.e. that are not DTN nodes) because of hardware limitations.

3.2 THE DTNFOG ARCHITECTURE

The architecture that can be built by means of DTNfog is illustrated in Figure 1. To its description is useful to examine

the flow of a generic request. One IoT node, being unable to locally execute a command (e.g. to calculate the frequency

of characters of a text file, or its entropy) sends the request to its upper “Fog” node (e.g. DTNfog1); if this node is able

to process it, it execute the command and sends back the response; otherwise, it forwards the request to its upper

DTNfog node (e.g. DTNfog2), and so on until the highest node of the hierarchical structure, the Cloud node (i.e. a DTNfog

node that has no upper nodes). We can distinguish between 3 kind of nodes:

 Client node: it is typically an IoT node, which originates a request being unable to locally execute a command
(e.g. to calculate the frequency of characters in a text file), sends it to its reference Fog node and waits for
the answer. It does not require DTNfog. In fact, it may be or may be not a DTN node.

 Fog node: it is an intermediate node, belonging to a fog layer located between the IoT layer and the Cloud. It
receives a request from a client or from a lower fog node; if it can execute the request, it sends back the
answer, otherwise it forwards the request to its upper node, either fog or cloud. It is a DTN node and needs
DTNfog.

 Cloud node: it is the highest node of the chain, and it is the same as a fog node, buti t has no upper nodes,
thus, if it cannot execute a command, it cannot further forward the request but it has to send back a negative
response.

Requests and responses are contained in a .tar file, to multiplex in one file:

 the commands to be executed (e.g. the analysis of a text file)

 the data on which to execute the commands (e.g. one or more text files)

 other data necessary to the forwarding back of the answer).
This design choice is dictated by the desire to make the requests “atomic” (all is needed is in the file) and to make

DTNfog “status free” (no need to register request forwarded to upper nodes), which is clearly advantageous in

terms of simplicity and scalability.

5

Nodo Cloud

Nodo DtnFog 1

Client 1 Client 2 Client n

TCP/IP-BP TCP/IP-BPTCP/IP-BP

Nodo DtnFog 2

TCP/IP-BP

TCP/IP-BP

Figure1: The DTNfog architecture (two intermediate fog layers).

3.3 STRUCTURE OF THE ARCHIVE “.TAR” FILE

The communication between DTNfog nodes is carried out by means of an archive file, whose structure is presented in

Figure 2It consists of the following files:

 command.cmd (the command to be executed),

 route.rt (the route followed by the request, i.e. the chain of DTNfog nodes, to be used in the reverse
direction by the response),

 one or more files on which to execute the command (optinal), e.g. the text file to be analyzed

 report.rp (optional)

 result.rs (the result of the command, inserted after execution).
The extensions: “.rt”, ”.cmd”, “.rp” e “.rs” are reserved to DTNfog.

6

Result.rs Route.rt Command.cmd Report.rp File

n

File_archivio.tar

Figure 2 structure of the archive file used by DTNfog

3.3.1 The “command.cmd” file

This file is mandatory, as it contains the command whose execution is required by the IoT node. Each DTNfog node of

the IoT-Cloud chain tries to execute it if the command is included in a white list specific to each node. .The command is

followed by the name8s) of the file(s) necessary to its execution. For example,

contaCaratteri divina_commedia.txt

3.3.2 The “route.rp” file

This file contains the list of nodes followed by the request, to be used in the reverse direction once the command has

been executed (or in case of failure). Is a sort of “record route” file, similar to the Ariadne’s thread, whose aim is to keep

track of the route followed to be able to go back in the reverse direction. It allows DTNfog not to keep memory of

requests received and forwarded on the local node.

In the ascending phase, each DTNfog node that does not manage to execute the command annotes the address at which

it desires to receive an answer in the route.rp file; the first DTNfog node that succeeds starts the descending phase,

where the last address in the file is read to send back the response, and then eliminated. Note that adresses can be IP

or BP, and in the latter case following the “dtn” or the “ipn” scheme. The response will be sent back via IP or BP according

to the address. The route.rt file is created and initialized by the client (IoT) node that makes the requests. Adresses must

contains the port number (IP) or the demux token (BP) and must be followed by the new line character (“\n”), For

example, we could alternatively have for the same node:

 @10.0.0.1:2500\n (for IP)

 @ipn:5.2000\n (for BP with ipn scheme)

 @dtn://nomedelnodo/dntfog\n (for BP with dtn scheme)

3.3.3 The “report.rp” file

This auxiliary file is optional. If inserted by the IoT client, all DTNfog nodes in both the ascending and descending chain,

write debug information in it.

3.3.4 The “result.rs” file

The file results.rs is inserted into the archive file by the DTNfog node that eventually manages to execute the command.

It contains a copy of the standard output and of the standard error generated by the command requested when

executed. If the file is missing, DTNfog recognizes that the command has not been executed yet, i.e. that it has been

received by a lower node. If the request goes up until the Cloud node, and even it cannot execute the command, a file

7

results.rs is inserted with a message of error. Success or failure, once a report.rt file is inserted the descending phase

starts. As a results.rs phase is present, DTNfog forward back the response looking at the last address in the route.rt file,

as previously described, until the IoT client originating the request is reached.

3.4 USE

3.4.1 Syntax

SYNTAX: DTNfog [options]

The syntax of DTNfog is very simple, with no compulsory parameters and only few options, all without arguments:

 "- - help"

 "- - no-header" (to omit the insertion of the DTNperf header when the archive file is sent via BP)

 "- - debug” (to have log messages on screen)

Only the second deserves an explanation. When used, the”dtnSender” thread, inherited by DTNproxy, inserts the

archive file in the bundle payload as it is, i.e. by omitting the insertion of the DTNperf header.

Configuration parameters, necessary to DTNfog correct execution, are inserted not in line, but in a configuration file,

specific to each node. An example is given below.

3.4.2 Configuration file
Let us consider the following example:

###list-commands##

contaCaratteri

#who

##end-list-commands##

##cloud-mode##

false

##cloud-mode##

##next-address##

10.0.0.11:2500

##end-next-address##

##tcp-interface##

tap0

##end-tcp-interface##

##allow-reports##

true

##end-allow-reports##

Configuration settings are ornaized in sections, with a syntax that looks like that used in ION .rc configuration files. The

first section lists the command whose execution is both possible and allowed, i.e. the white list of commands. In the

example, only the command “contaCaratteri” is allowed. The second section is used to let the node know if it is the

Cloud node or an ordinary DTNfog node (ordinary in the example). The next section contains the address (eithr IP or BP)

of the next higher node (IP 10.0.0.11 port 2500). The following section contains the interface at which the current

DTNfog node is reachable via TCP; the corresponding IP address, to be inserted in route.rt is derived automatically by

DTNfog from this information (the port is always 2500). Note that it does not exist a corresponding DTN section, as

DTNfog is always able to derive its own DTN address, which is unique, automatically (one DTN node has one DTN

address, even if it may have as many IP addresses as NIC cards). The tcp-interface section is thus necessary to identify

8

the IP address to be used, among the many possibly available. Note that DTNfog will insert its IP or DTN address in the

file route.rt depending on the kind (TCP or DTN respectively), inserted in the next-address section. The last section

enables the insertion of debug information in the file report.rp, if present. This feature has been inserted should an

intermediate node not to be willing to disclose its identity and position in the hierarchical chain to lower nodes for

security reasons. In the DTNfog architecture, a node only needs the knowledge of its direct superior, not of the full chain

of higher nodes.

3.4.3 The IoT node
The IoT node is the only node that does not require the use of DTNfog. In facts, it may be or may be not a DTN node.

The only requirement is that It be able to prepare a DTNfog-compliant request, i.e. an archive following the structure

previously illustrated. The archive file must then sent to the next DTNfog node either via IP or BP.

3.5 AN EXAMPLE OF USE
We present an example where the request generated by the IoT node can be executed only by the Cloud node. We have

4 nodes, the IoT node (on the host), two DTNfog nodes (on VM1 and VM2, respectively) and a clod node (on VM4). The

DTNfog configuration files of the last 3 nodes is presented below. (Figure 4). Note that the communication between

VM1 and VM2 is via DTN, as in VM1 configuration file we have as “next address” the DTN address of VM2, while that

between VM2 and VM4 is via TCP, as in the configuration file of VM2 we have the IP address of VM4. As VM4 is delared

as Cloud node its next-address is irrelevant. All nodes declare eth0 as “tcp-interface”. This is useful only to automatically

derive the corresponding IP address to be inserted in route.rt, should the IP protocol to be used.

Figure 4:DTNfog configuration files on vm1,vm2 e vm4

The archive file must be prepared on the IoT node. It will contain the report.rp file to record debug information from all

DTNfog nodes. The command.cmd file contains the following line:

reportCaratteri divina_commedia.txt

which will give as a result a table with the frequency of characters present in the divina_commedia.txt file (obviously

containing all Divina Commedia by Dante) and an estimate of the corresponding entropy of the alphabet. The IoT node

is assumed to be a DTN node in this case, and it specifies as its response address in route.rt the ipn address of the host,

(the demux token is that typical of DTNperf server, 2000, see below):

@ipn:5.2000

9

On the IoT node it is launched DTNperf with the option - - server (i.e. in server mode), to receive the response via BP.

It automatically registers itself as ipn:5.2000, i.e. the address specified in route.rt. After launching DTNfog on all other

nodes, the archive can then be sent from the IoT node to the next DTNfog node (on VM1) alternatively either via BP, by

the DTNperf client, or via TCP by the TCPclient auxiliary program of DTNproxy.

The request sent to VM1 is forwarded via BP to Vm2, as VM1 has not the command “reportCaratteri” in its white list.

VM2 does the same, forwarding the request to VM4 (this time via IP), which can execute the command (is in its white

list). The file results.rt is inserted and the response is sent back to the IoT node, via VM2 and VM1.

At the end, we receive on the IoT an archive file containing both the report.rp file (with debug information) and the

results.rt file (Figure 12 and 13 respectively).

Figure 5 The report.rp file of the example

10

Figure 6 The result.rt file of the example

